Most people (at least those with college education) are well aware of how exponential growth works. The typical (correct) intuition is that when things are growing exponentially, they may initially look like nothing, in fact things may go very slow for quite a while, but eventually there is an explosion and exponential growth eventually outpaces everything sub-exponential. What is less commonly appreciated is that exponential decay works similarly - things exist, get smaller and effectively at some point become nonexistent. It is almost as if there was a discrete transition. Let us keep that in mind while we discuss some probability theory below.
Gauss and Cauchy
Gauss and Cauchy were two very famous mathematicians, both having countless contributions in various areas of mathematics. Coincidentally, two seemingly similarly looking probability distributions are named after these two individuals. And although many people working in data science and engineering have relatively good understanding of Gaussian distribution (otherwise known as "normal" distribution), Cauchy distribution is less known. It is also a very interesting beast, as it is an example of a much less "normal" distribution than Gaussian and most intuitions from typical statistics fail in the context of Cauchy. Although Cauchy like distributions are … Read more...