In this post I will explore the capabilities of contemporary deep learning models on the vitally important task of detecting a cat. Not an ordinary cat though, but a sketch of an abstract cat. This task matters because success tells us something about whether a visual system has learned generalization and abstraction -- at least on par with a 2-year old. This post is inspired by my ex co-worker Peter O'Connor who tried similar experiments on LeNet several years ago. In addition, this post is a continuation of this blog's highly popular "Just how close are we to solving vision?" which to-date has amassed nearly 15,000 hits. Let's begin by introducing my menagerie:
|
Figure 1. The cat menagerie. From left to right (top to bottom): "abstract cat", rough sketch of a real cat, less rough sketch of a real cat, the "best cat" I could draw, "best cat" inverted. |
I made these sketches myself, based on a photo of a cat. NOTE: Whenever you test a deep net (or any other machine learning model), always use new data. Anything you find on the Internet is either already in the training set or soon will be.